
vv

018

https://dx.doi.org/10.17352/gjmccrDOI: 2455-5282ISSN: 

C
L

IN
IC

A
L

 G
R

O
U

P

Citation: Sapienza OML. Markov Models of Genomic Events. Glob J Medical Clin Case Rep. 2024:11(3): 018-020. 
Available from: https://dx.doi.org/10.17352/2455-5282.000181

Abstract

The Markov Models of genomic elements are newly considered. The representation of the fundamental matrix of the Markov model is newly theorised. The order of magnitude 
of the initial conditions for the elements of the transition probabilities is newly hypothesised.

The model is compared with a sub-Hidden Markov Model of genomic events. The chosen representation of the states is newly proven to consist of an enveloping algebra. The 
new condition is posed on the Markovian feature of the originating chain from the study of the elements of the loci of the state space; in this case, the choice of the representation of 
the probability matrix is analytically spelled out, and Monte Carlo methods are not necessitated.
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Introduction

The present report is aimed at further improving the 
mathematical defi nitions in the Markov models of genomic 
elements, such as that recently presented in [1].

The present paper is aimed at improving from [1] the long-
standing interrogations raised in [2-5] about the analytical 
modellings of algorithms of oncogenesis.

Eq. (1) form [1] is here imposed a new hypothesis, for which 
the comparison holds also with the (alternative) numerical 
(Monte Carlo) methods developed in [6] and more recently 
improved in [7]. More in detail, the new analysis is pointed 
out, which ensures the new choice of the representation of 
the probability matrix, for which the confrontation with the 
numerical methods (if/where necessitated) is compliant. The 
comparison with numerical methods can be of interest i.e. in 
the case envisaged in [8] for the numerical test of inference 
parameters.

Furthermore, the method is compared with the analysis of 

the sub-Hidden Markov Model (subHMM), which is used in [9] 
to understand the study of the copy number abnormalities in the 
allele-specifi c analyses; in this case, the states of the Markov 
models are newly proven to consist of an enveloping algebra. 
Furthermore, the relevance of the hypothesis of a constant 
number of Markov states in the defi nition of the fundamental 
matrix of the originating chain is newly demonstrated to defi ne 
the Markovian feature. Accordingly, the enveloping algebra 
defi nes the committors, which characterise the Markov State 
Model, from which the subHMMs can be issued. After these 
proofs, it is possible to analytically calculate the Mean-First 
Passage Times, the time evolutions of the eigenvalues, and 
those of the modellisation errors.

Low-rank-tensor methods

The evolution of cancer phenomena can be modelled as 
continuous-time Markov chains.

Transition rates are hypothesised as separable functions in 
[1], i.e. such that convergent ’iteration methods’ can be made 
use of, for which the notion of distribution is retrieved.
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Non-stationarity is due to the fact that the age of the 
tumors might be unknown, for which the marginalisation of 
the time variable is needed.

The necessity of the low-rank tensor methods is justifi ed 
from the evidence that given d the number of ’genomic 
events’, there are n = 2d number of Markov states of the tumor; 
as from the recent understandings, there are d ∼ 299 known 
genes which determine the evolution of the tumors [10]. The 
functional dependence of the state space on 2d is named ’state 
space explosion’ after [11]; it is tamed after the introduction of 
the ’marginal distributions’, by which operators that act on the 
low-rank tensors are defi ned.

The ’Hierarchical Tucker format is adopted.

Let Q̂  be the fundamental matrix of the chosen Markov 
chain on a discrete state space S with initial distributions 
assumed as defi ned.

It is here newly requested that for Eq. (1) from [1] to hold, 
the hypothesis that the entries of Q̂  be infi nitesimal must 
newly be requested.

Let P be the probability matrix associated with the 
fundamental matrix Q̂  and after the new hypothesis; the 
distributions from p̂  are defi ned from the initial value p, 
where the latter is written as
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The new hypothesis p(0) ∼ o(0) is here therefore newly 
requested for the proper defi nition. In Eq. (1),τ is a time variable, 
and ˆ ˆQ I 

    is a regular operator. The spectrum  ˆ ˆ( )Q I   of the 
operator  ˆ ˆQ I  is written as from the states x ∈ S from the 
defi nition 
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It is important to remark that the marginalisation 
procedures originating from Eq. (2), from which the Markov 
models descend, therefore differ from the ’dominant-
eigenvalue’ technique with

   ˆ ˆ( ) C:Re( ) 1 .Q I z z                     (3)

The method of the ’stochastic automata networks’ is 
further discussed in [12].

Allele-specifi c copy number methods

Allele-specifi c copy-number methods allow one to study 
copy-number abnormalities, as from [9].

For this sake, a sub-Hidden Markov Model (subHMM) is 
implemented: it allows one to consider both the ’subclone 
region’ and the ’region-specifi c genotype’. The hidden-state 
variable Wk of the state k represents the ’conglomeration of the 
subclone genotype’ and the ’clonal proportion’.

More in detail, the state Wk[zk,Uk,Tk] is defi ned as giving 
rise to time-dependent transition probabilities which can be 
represented as ’multinomial distribution’.

The states Wk are specifi ed after Zk the ’mainclone genotype’ 
of the locus k, Uk the ’indicator’ about whether there is a 
subclone in k, and Tk the ’subclone genotype’ (i.e. if the 
considered subclone exists).

The transition of the states Wk is considered in [9] only for 
consecutive ’loci’.

A maximum number of copies is assumed.

Therefore, the elements of the subHMM are here newly 
proven to compose an enveloping algebra.

Under the hypothesis of the ’constant clonal proportion’, 
the transition probabilities Pt(z) from Eq. (2) in [9] determine 
that the hidden states are not observed, and ’allele-specifi c’ 
elements are considered.

Conclusion

The Markov model of genomic events is newly further 
analysed.

More in detail, the choice of the representation of the 
transition probabilities is reconducted to be well-posed only 
under the new hypothesis that the entries of the fundamental 
matrix be infi nitesimal.

The new hypothesis on the initial conditions of the 
transition elements is requested for the time-marginalisation 
technique to be consistent. The difference with the ’dominant-
eigenvalue approach’ is stressed. The case of the sub-Hidden 
Markov Model in the study of allele-specifi c copy number 
analysis is newly approached.

The elements of the Markov models are therefore here 
newly proven to consist of an enveloping algebra.

Furthermore, it aims to focus on the hypothesis of a 
constant number of ’constant clonal proportions: in this case, 
the Markovian feature of the originating chain is newly proven 
after the study of the entries of the fundamental matrix.

It has to be stressed that the proof of the Markovian property 
of the originating chain is fundamental in the defi nition of the 
Markov State Model(s) from which the subHMM is taken. In 
the case of the Markovian feature, the possibility to defi ne 
the committor is necessitated for the study of the Mean-First 
Passage times and that of the time evolution of the eigenvalues, 
as from [13] and [14], respectively.
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