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Abstract

Background: The high nonlinearity of the dopamine circadian rhythms model is seen in the presence of limited cycles that disrupt the circadian rhythms. Limit Cycles 
originate from Hopf bifurcation points. Bifurcation analysis and Multiobjective nonlinear model predictive control are performed on the dopamine circadian rhythms model. 

Methods: The MATLAB software MATCONT was used to perform the bifurcation analysis. The Multi-objective Nonlinear Model Predictive Control was performed 
using the optimization language PYOMO. 

Results: The Bifurcation analysis reveals Hopf Bifurcation points that produce limit cycles. To eliminate the rhythm disturbing limit cycles the bifurcation parameter 
is multiplied by an activation factor involving the tanh function. The nonlinearity of the dopamine circadian rhythms model also causes spikes in the control profi les when 
multiobjective nonlinear model predictive control calculations are performed. The spikes are also eliminated when the control variable is multiplied by the same activation 
factor. 

Conclusion: The dopamine circadian rhythms model is shown to have two Hopf bifurcations, which cause limit cycles that can disrupt the circadian rhythms. An 
activation factor involving the tanh function eliminates the limit cycle causing Hopf bifurcations. This activation factor also removes the spikes that occur in the control 
profi le.
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Background and introduction

Graybiel and Kimura [1] researched the basal ganglia 
in adaptive motor control. Vitaterna, et al. [2] studied the 
differential regulation of mammalian period genes and 
circadian rhythmicity by cryptochromes 1 and 2. Van der 
Horst, et al. [3] demonstrated that mammalian cry1 and 
cry2 are essential for the maintenance of circadian rhythms. 
Strogatz [4] explored the onset of synchronization in coupled 
oscillators. Shearman, et al. [5] discussed how the molecular 
loops interact in the mammalian circadian clock. Abarca, et al. 
[6] showed that Cocaine sensitization and reward are under 
the infl uence of circadian genes and rhythm. Preitner, et al. 
[7] demonstrated that the orphan nuclear receptor rev-erb 
controls circadian transcription within the positive limb of the 
mammalian circadian oscillator.

Lotharius and Brundin [8] investigated the pathogenesis 
of Parkinson’s disease with regard to dopamine vesicles and 
alpha-synuclein. Oleksiak, et al. [9] studied the variation in 
gene expression within and among natural populations. Boeuf, 
et al. [10] investigated the individual variation of adipose gene 
expression and identifi ed covariate genes by cDNA microarrays. 
Forger and Peskin [11] provided a detailed predictive model of 
the mammalian circadian clock. Leloup and Goldbeter [12] came 
up with a detailed computational model for the mammalian 
circadian clock. Sato, et al. [13] demonstrated a functional 
genomics strategy that reveals rora as a component of the 
mammalian circadian clock. Castaneda, et al. [14] discussed the 
circadian rhythms of dopamine, glutamate, and GABA in the 
striatum and nucleus accumbens of the awake rat.
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This research aims to conduct a bifurcation analysis and 
perform multiobjective nonlinear model predictive control 
(MNLMPC) calculations on the dopamine circadian rhythms 
model of Kim and Reed [40]. The bifurcation analysis reveals 
the existence of unwanted Hopf bifurcations that cause limit 
cycles. An activation factor is used to eliminate the Hopf 
bifurcations. The MNLMPC calculations revealed spikes in the 
control profi les. These spikes are also eliminated using the 
same activation factor. 

The paper is organized as follows. The dopamine circadian 
rhythms model of Kim and Reed [40] is fi rst described. The 
bifurcation analysis and multiobjective nonlinear model 
predictive procedures are then described followed by the results 
and discussion. The conclusions are then presented. 

Dopamine circadian rhythms model

In the Dopamine Circadian model by Kin and Reed [40] 
the variables are X = [P1,P2,P3,P4,C,PC,PCN,PN,CN,BC,REV,ROR,S,
TH,MAO,DRD3]. P1,P2,P3,P4 represent the period proteins PER 
with 1 2 3 4 i phosphorylations in the cytosol. C represents the 
CRYPTOCHROME protein (CRY) in the cytosol. PC, PC,PCN,PN,CN 
represent the PER-CRY protein dimer in the cytosol, the nuclear 
PER-CRY protein dimer that inhibits BMAL1-CLOCK, the 
nuclear PER, and the nuclear CRY; that inhibits transcription 
driven by BMAL1-CLOCK. BC,REV,ROR,S,TH,MAO,DRD3 
represent the BMAL1-CLOCK; a protein dimer that drives the 
transcription of core clock genes, the orphan nuclear receptor 
REV-ERB, the retinoic acid receptor-related orphan receptor, 
the BMAL1 circadian clock gene, Tyrosine hydroxylase 
which is a rate-limiting enzyme in dopamine synthesis, the 
Monoamine oxidase which catalyzes dopamine degradation 
and the Dopamine receptor. 

Table 1 contains the description of the model variables. The 
model consists of 16 differential equations and has three linked 
parts. The fi rst part is the core circadian clock that consists of a 
feedback loop containing BC, P1,P2,P3,P4 PC, PC,PCN,PN.

The second part is the secondary feedback loop involving 
REV, ROR, S, and BC that infl uences the core clock while the 

Kienast and Heinz [15] conducted research on Dopamine in 
the diseased brain. Sigal, et al. [16] discussed the Variability 
and memory of protein levels in human cells. Hong, et al. 
[17] showed a strategy for robust temperature compensation 
of circadian rhythms. McClung [18] researched the effect of 
circadian genes, rhythms, and the biology of mood disorders. 
Sleipness, et al. [19] discussed the diurnal differences in 
dopamine transporter and tyrosine hydroxylase levels in rat 
brain: Dependence on the suprachiasmatic nucleus. Hampp, et 
al. [20] investigated the regulation of monoamine oxidase by 
circadian clock components. 

Liu, et al. [21] investigated the redundant function of rev-
erb and  and the non-essential role of bmal1 cycling in the 
transcriptional regulation of intracellular circadian rhythms. 
Hood, et al. [22] demonstrate that Endogenous dopamine 
regulates the rhythm of expression of the clock protein per2 
in the rat dorsal striatum via daily activation of d2 dopamine 
receptors. Ripperger, et al. [23] investigated the daily rhythm 
of mice. Gravotta, et al. [24] showed that the depletion of 
dopamine using intracerebroventricular 6-hydroxydopamine 
injection disrupts normal circadian wheel-running patterns 
and period2 expression in the rat forebrain. Bugge, et al. [25] 
show that the Rev-erb and rev-erb co-ordinately protect 
the circadian clock and normal metabolic function. Solt, et al. 
[26] demonstrated a method to regulate circadian behavior and 
metabolism by synthetic rev-erb agonists. While Ikeda, et al. 
[27] discovered the molecular mechanism that regulates the 
24-hour rhythm of dopamine d3 receptor expression in mouse 
ventral striatum.

Karatsoreos [28] studied the links between circadian 
rhythms and psychiatric disease. Jager, et al. [29] investigated 
the behavioral changes and dopaminergic dysregulation in 
mice lacking the nuclear receptor. Chung, et al. [30] analyzed 
the impact of circadian nuclear receptor rev-erba on midbrain 
dopamine production and mood regulation. Ye, et al. [31] 
discuss bmal1 inhibition mediated by cryptochrome and period 
proteins in the mammalian circadian clock. Fifel, et al. [32] 
showed how the daily and circadian rhythms were altered 
following dopamine depletion in mptp-treated non-human 
primates. Colwell [33] studied the link between neural activity 
and molecular oscillations. 

Bedrosian, et al. [34] investigated the timing of light exposure 
affects mood and brain circuits. Huang, et al. [35] showed that 
Circadian modulation of dopamine levels and dopaminergic 
neuron development contributes to attention defi ciency and 
hyperactive behavior. Lee, et al. [36] identifi ed a novel circadian 
clock modulator controlling bmal1 expression through a ror/
rev-erb-response element-dependent mechanism. Takahashi 
[37] studied the transcriptional architecture of the mammalian 
circadian clock. Albrecht [38] studied the effect of molecular 
mechanisms in mood regulation involving the circadian clock. 
A comparison of macroscopic models for human circadian 
rhythms was conducted by Hannay, et al. [39]. Kim and Reed 
[40] developed a mathematical model involving circadian 
rhythms and dopamine.

Table 1: Description of Model Variables.

BC BMAL1-CLOCK
protein dimer that drives the transcription of core clock 

genes

Pi PERIOD protein (PER) with i phosphorylations in the cytosol

C CRYPTOCHROME protein in the cytosol

PC PER-CRY PC PER-CRY protein dimer in the cytosol

PCN nuclear PER-CRY protein dimer; 

PN nuclear PER

CN nuclear CRY; 

ROR retinoic acid receptor-related orphan receptor 

REV orphan nuclear receptor 

S Bmal1; circadian clock gene

TH Tyrosine hydroxylase

MAO Monoamine oxidase (MAO); 

DRD3 DRD3 Dopamine receptor D3 
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third part is the dopamine (DA synthesis the elements of which 
are REV, ROR, and DRD3. All concentrations are in nanomoles 
(nM) and all rates are in nanomoles per hour (nM/hr). More 
details can be found in the work of Kim and Reed [40].

The model equations include algebraic expressions that are 
used in time-dependent differential equations. The function f 
is defi ned as 

2 1/2( ) [( ) 4 ]
( , , )

2

x y z x y z zx
f x y z

x

     
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The differential equations are 
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The parameters for the Core Circadian Clock are 

0.02; 3; 0.5; 3; 5; 0.45; 0.45; 0.45;1 2 3 4

0.5; 0.4; 0.5; 5; 0.1; 0.12; 0.75; 0.2;5 5 74 6 6

0.1; 0.25; 0.2 0.1; 0.1; 2 / 3

K k n r r r rc c cd

m d r r d d r dc c

d d dn p c bc bc



  

       

      

       

The parameters for the secondary loop are

 2; 0.2; 1.5; 1; 0.5; 0; 5.3; 3.7;

1.5; 0.5; 0.1; 1.8; 0.25; 0.9; 3

n k k k nrev s s s s s

r d b r d drev rev ror ror ror s

  



       

      
 

The parameters for the equations of the dopamine (DA) 
elements are 
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1; 10; 0.4; 1.23; 1; 0.85; 5.6; 0.016

1; 10; 0.4; 1; 0.53; 0.3; 3

k k b d dmth th th th th th th

k n b ddr dr dr dr dr dr dr

  

  

       
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Numerical methods used 

Bifurcation analysis: Multiple steady-states and oscillatory 
behavior occur in various situations. Branch and Limit 
bifurcation points cause multiple steady-states while Hopf 
bifurcation points produce limit cycles. The MATLAB program 
MATCONT [41,42] is a commonly used software to locate limit 
points, branch points, and Hopf bifurcation points. Consider 
an ODE system 

( , )x f x                 (28)
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 is the bifurcation parameter. The matrix A can be written 
in a compact form as 

[ | / ]A B f                   (30)

The tangent at any point x; ( [ , , , , .... ]1 2 3 4 1v v v v v vn  ) 
must satisfy 

Av = 0                   (31)

The matrix B must be singular at both limit and branch 
points. The n+1th component of the tangent vector Vn+1 = 0 at a 

limit point (LP) and for a branch point (BP) the matrix 
A
Tv

 
 
 

 
must be singular. At a Hopf bifurcation, 

det(2 ( , )@ ) 0f x Ix n                 (32)

@ indicates the bialternate product while In is the n-square 
identity matrix. Hopf bifurcations result in unwanted limit 
cycles (which in turn cause problems for optimization and 
control) and should be eliminated. Further details can be found 
in the works of Kuznetsov [43] and Govaerts [44].

Multiobjective nonlinear model predictive control algo-
rithm

Flores Tlacuahuaz [45] fi rst proposed the Multiobjective 

nonlinear model predictive control method that does not 
involve weighting functions, nor does it impose additional 
constraints on the problem unlike the weighted function or the 
epsilon correction method [46]. For a set of ODE 

( , )

( , ) 0 ;

dx
F x u

dt
L U L Uh x u x x x u u u



    

               (33)

For a fi nal time of tf let pj (tf) j=1,2,...n be the variables 
that need to be optimized (maximized or minimized). 
Simultaneously. n the total number of variables that need 
to be optimized simultaneously. In this MNLMPC method, 
dynamic optimization problems that independently minimize/
maximize each variable pj (tf) j=1,2,...n are solved individually. 
The individual minimization/maximization of each pj (tf) 

j=1,2,...n will lead to the values 
*p j . Then the multiobjective 

optimal control problem that will be solved is 

* 2min( ( ( ) ))
1

( , ); ( , ) 0

;

n
p t pj jfj

dx
subject to F x u h x u

dt
L U L Ux x x u u u

 


 

   

              (34)

This will provide the control values for various times. The 
fi rst obtained control value is implemented and the rest are 
ignored. The procedure is repeated until the implemented 
and the fi rst obtained control values are the same or if the 

Utopia point pj (tf) = 
*p j  ; for all j from 1 to n is achieved. 

The optimization package in Python, Pyomo [47], where the 
differential equations are automatically converted to algebraic 
equations will be used. The resulting optimization problem was 
solved using IPOPT [48]. The obtained solution is confi rmed as 
a global solution with BARON [49]. To summarize the steps of 
the algorithm are as follows. 

1. Minimize/maximize pj (tf) j=1,2,...n. This will lead to the 

value *p j  . 

2. Minimize 
* 2( ( ( ) ))

1

n
p t pj jfj

 


. This will provide the 

control values for various times.

3. Implement the fi rst obtained control values and discard 
the remaining.

4. The steps are repeated until there is an insignifi cant 
difference between the implemented and the fi rst 
obtained value of the control variables or if the Utopia 
point is achieved. 

Results and discussion 

The Variables are ordered as 
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X = [P1,P2,P3,P4,C,PC,PCN,PN,CN,BC,REV,ROR,S,TH,MAO,DRD3]. 
Bifurcation analysis was performed using the MATLAB program 
MATCONT. ds is the bifurcation parameter. The bifurcation 
analysis revealed the existence of two Hopf bifurcation points 
given by HA and HB in Figure 1. The variable values at both 
these bifurcation points are X = (0.668579 0.668579 0.668579 
0.369388 2.216329 0.660230 1.197233 1.406020 1.757524 
1.230547 0.416188 0.665301 1.230547 0.348979 112.822706 
0.575163 1.699851) and X = (0.944861 0.944861 0.944861 
0.482939 2.897634 1.128532 2.379765 2.243310 2.804137 
3.868766 0.515709 0.723462 3.868766 0.646619 159.445209 
1.411344 0.713746), respectively. 

The limit cycles that occur at both these points are shown 
in Figures 2,3. When the bifurcation parameter ds was modifi ed 

to ( tanh( )) / 40;d ds s  both the Hopf bifurcation parameters 

disappeared. (Figure 4) Sridhar in 2024 [50] explained with 
several examples how the activation factor involving the tanh 
activation function where a bifurcation parameter u is replaced 

by ( tanh / )u u  ) successfully eliminates the limit cycle causing 

Hopf bifurcation points. Eliminating the Hopf bifurcation 
points in the dopamine circadian rhythms model using the 
tanh factor confi rms the results [50]. 

DRD3 plays an important role in cognition. BC is the 
protein dimer that drives the transcription of core clock genes. 
TH (Tyrosine hydroxylase) is the rate-limiting enzyme in 
dopamine synthesis. MAO (Monoamine oxidase) catalyzes 
dopamine degradation. Hence, the MNLMPC aims to maximize 
the fi nal value of the dopamine receptor (DRD3) and BC while 
minimizing the fi nal values of MAO and TH. 

The MNLMPC strategy described previously was used. ds is 

the control variable. 3( ) ( )DRD t BC tf f  was fi rst maximized 

the resulted in a value of 107.1273. Then ( ) ( )TH t MAO tf f  was 

minimized. This resulted in a value of 0.0969. The multiobjective 

optimal control problem involved the minimization of t

2 2( 107.1273)3( ) ( ) ( ) (( ) 0.0969)DRD t BC t TH t MAO tf f f f   

. The fi rst obtained control value was implemented and the 
rest discarded until there was no difference between the 
implemented and the fi rst obtained control value. This obtained 
value is referred to as the MNLMPC value. 

The MNLMPC value obtained was ds = 0.0326163. The 
resulting profi les are shown in Figures 5-7. 

Figure 7 shows the ds versus t profi le that demonstrates Figure 1: Two Hopf bifurcation Points HA and HB when tanh activation factor was 
not used. 

Figure 2: Limit cycle because of Hopf bifurcation point HA.

Figure 3: Limit cycle because of Hopf bifurcation point HB.

Figure 4: Both Hopf bifurcation points disappear because of the use of the activation 
factor involving the tanh function.
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the existence of spikes. The tanh activation factor effectively 
eliminates spikes in optimal control profi les [51,52,53]. When 

the control variable ds was modifi ed to ( tanh( )) / 40;d ds s  and 

the MNLMPC calculations were done again. 

The maximization of 3( ) ( )DRD t BC tf f  produced a 

value of 107.17. ( ) ( )TH t MAO tf f  was then minimized 

and the value obtained was 0.3567. The multiobjective 
optimal control problem involved the minimization of

2107.17) ( 2( 3( ) ( ) ( ) ( ) 0.3567)DRD t BC t TH t MAO tf f f f   

. The fi rst obtained control value was implemented and the 
rest discarded until there was no difference between the 
implemented and the fi rst obtained control value. The MNLMPC 
value obtained was ds == 0.6731. 

The resulting profi les are shown in Figures 8-10. Figure 
10 shows the ds versus t profi le demonstrating that the spikes 
have been eliminated because of the tanh activation factor. 

The multiobjective nonlinear model predictive control 

Figure 5: bc pc cn pn and pcn profi les when activation factor was not used in 
MNLMPC calculation.

Figure 6: p1, p2, p3, p4 s profi les when activation factor was not used in MNLMPC 
calculation.

Figure 7: ds profi le when activation factor was not used in MNLMPC calculation.

Figure 8: bc pc cn pn and pcn profi les when activation factor was used in MNLMPC 
calculation.

Figure 9: p1, p2, p3, p4 s profi les when activation factor was not used in MNLMPC 
calculation.

Figure 10: ds profi le when activation factor was used in MNLMPC calculation.
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is more rigorous than other methods that involve additional 
unnecessary constraints or equations [46]. The elimination of 
the Hopf bifurcations avoids the unnecessary limit cycles that 
may disrupt the circadian rhythm. 

Conclusions and future work

The dopamine circadian rhythms model is shown to have 
two Hopf bifurcations, which cause limit cycles that can disrupt 
the circadian rhythms. An activation factor involving the tanh 
function eliminates the limit cycle causing Hopf bifurcations. 
The high nonlinearity in the dopamine circadian rhythms model 
also produces spikes when multiobjective nonlinear model 
predictive calculations are performed. The same activation 
factor also eliminates the spikes in the control profi les. 
Future work will involve the performance of a combination 
of bifurcation analysis and Multiobjective nonlinear model 
predictive control calculations on more advanced Circadian 
rhythm models. 
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