

ISSN: 2455-5282

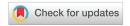
DOI: https://dx.doi.org/10.17352/gjmcd

Research Article

Stability Study of Tadaflexe (Tadalafil 10 mg) Oral Gel Sachet in Yemeni Honey

Hussien O Kadi* and Alaa AL-Maktari

Faculty Medical Sciences, Yemen University, Sana'a, Yemen


Received: 21 October, 2025 Accepted: 25 October, 2025 Published: 27 October, 2025

*Corresponding author: Dr. Hussien O Kadi, Professor, Faculty of Medical Sciences, Yemen University, Sana'a, Yemen. E-mail: hussien62@yahoo.com

Keywords: Stability; Tadalafil; Tadaflexe; Oral; Gel

Copyright License: © 2025 Kadi HO, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

https://www.clinsurggroup.us

Abstract

Introduction: Tadalafil is a selective phosphodiesterase type 5 (PDE5) inhibitor widely used for the treatment of erectile dysfunction and other related disorders. Oral gel formulations are gaining interest due to improved patient compliance, faster onset of action, and ease of administration. This study evaluates the stability of an oral tadalafil gel formulation stored under both long-term and accelerated conditions over six months.

Methods: The stability of Tadaflexe, a novel oral gel sachet formulation containing tadalafil (10 mg per 5 g Yemeni honey base), was evaluated under accelerated and predicted long-term conditions according to ICH Q1A(R2) guidelines. Physical appearance, pH, drug assay, viscosity, and microbial safety were assessed over six months at 40 °C ± 2 °C / 75% RH ± 5%.

Results: Demonstrated that oral Tadaflexe (tadalafil 10 mg) gel maintained acceptable pharmaceutical quality, with no significant changes in appearance, drug assay (>95% retention), or microbial contamination. Yemeni honey proved to be an effective natural excipient for stability, offering viscosity and antimicrobial properties.

Conclusion: The oral Tadaflexe (tadalafil 10 mg) gel demonstrated excellent stability across all tested parameters over six months. These findings provide a strong basis for further clinical development and market readiness of the product.

Introduction

Tadalafil is a selective phosphodiesterase type 5 (PDE5) inhibitor widely used for the treatment of erectile dysfunction and other related disorders [1].

The advantages of oral gel formulations include easier administration, quicker onset of action, and increased patient compliance [2]. For these pharmaceutical formulations to have a shelf life, be safe, and be effective, stability studies are essential [3–6]. Pharmaceutical development relies heavily on stability testing to ensure that formulations remain safe, effective, and of high quality for the duration of their specified shelf life [1]. The PDE–5 inhibitor tadalafil is susceptible to environmental variables such as temperature and humidity, which could hasten its breakdown [2]. Traditional tablet formulations frequently encounter issues such as stability loss under accelerated circumstances and hygroscopicity [3]. Oral

gels and other alternative dose formulations have shown better patient acceptability and physicochemical stability [4]. The antibacterial, antioxidant, and stabilizing qualities of honey, a natural excipient, have been extensively researched for use in pharmaceutical applications [5,6]. The purpose of this study was to assess Tadaflexe, an oral gel sachet containing tadalafil 10 mg honey, for rapid and anticipated long-term stability. Prof. Dr. Hussien O. Kadi (patent) created the unique formulation of Tadaflxe (Tadalafil 10 mg) oral gel sachet in Yemeni honey.

Materials and methods

The accelerated stability study was conducted at Yemen University, 30/9/2023, to evaluate the stability of Tadaflexe, a (tadalafil 10 mg) Yemeni honey-based oral gel sachet, according to ICH Q1A (R2) guidelines for accelerated stability testing [7,8]. The Ethics Committee of Yemen University, Faculty of Medical Sciences, Sana'a, Yemen, approved the protocol of the study.

214

The study was conducted on oral tadalafil gel sachets (10 mg/5 g), packed in AL/AL sachets. Two storage conditions were evaluated: 30 °C \pm 2 °C / 65% \pm 5% RH and 40 °C \pm 2 °C / 75% ± 5% RH. Observations were recorded at 0, 3, and 6 months. Parameters included organoleptic properties (color, odor, taste), pH, drug assay, and microbial load (total aerobic count, mold and yeast, and pathogens such as Salmonella, Pseudomonas aeruginosa, Escherichia coli, and Staphylococcus aureus) [7-9]. The parameters of the stability study were analyzed through validated HPLC techniques, viscosity was assessed with a Brookfield viscometer, and microbial assessment according to USP guidelines [10-15]. The HPLC analysis was performed using a Shimadzu LC-20AD system equipped with a UV detector set at 284 nm. A C18 reversed-phase column (250 mm × 4.6 mm, 5 µm particle size) was used. The mobile phase consisted of acetonitrile and phosphate buffer (60:40, v/v), adjusted to pH 3.5 with orthophosphoric acid. The flow rate was maintained at 1.0 mL/min, the injection volume was 20 µL. and the retention time of tadalafil was observed at 6.8 minutes. The method was validated for linearity, precision, and accuracy according to ICH Q2(R1) guidelines.

Statistical analysis

Paired t-tests were conducted to compare zero time with 3 months and 6 months stability parameter values. The data were analyzed using SPSS version 21. Paired t-tests were conducted to compare parameters at 0, 3, and 6 months, while one-way ANOVA was used to assess differences among time points. The degree of freedom (df) for each parameter comparison was 2, and p-values were considered statistically significant when <0.05.

Results

At both storage conditions, the tadalafil gel retained a slightly yellow color with a sweet honey-like odor and taste. The pH remained stable within the range of 5.7 to 5.8. For assay and pH data, no statistically significant differences were found (p > 0.05), confirming the stability of the formulation. ANOVA F-values for assay and viscosity were 1.32 and 1.47, respectively (p > 0.05). The assay results at 30 °C ± 2 °C / 65% ±5% RH were 101.2% (zero time), 100.7% (3 months), and 99.7% (6 months). Under accelerated conditions 40 °C ± 2 °C / 75% ± 5% RH, the results were 101.2%, 100.1%, and 99.9%, respectively. All microbial tests complied with pharmacopeial specifications, and no pathogenic organisms were detected at any time point, as shown in Tables 1,2 and Figure 1.

Discussion

The findings confirm that the oral Tadaflexe (Tadalafil 10 mg per 5 g Yemeni honey base) gel is physically, chemically, and microbiologically stable under both standard and accelerated conditions. The assay results remained within the ICH acceptable range (95% – 105%) throughout the study, indicating minimal degradation. The constant pH and absence of contamination further support the robustness of the formulation. These results validate the formulation's quality and suitability for extended shelf life [16]. The formulation's robustness was supported by a minor decrease in viscosity that

Table 1: Stability Results of Tadaflexe (Tadalafil 10 mg) in Yemeni honey oral gel sachet under accelerated conditions at 30 °C ±2 °C / 65% ±5% RH.

Parameter	Zero Time	3 Months	6 Months
Appearance	Clear, homogenous	No change	Slight viscosity reduction
pН	5.8	5.7	5.7
Assay (% of label)	101.2%	100.7%	99.7%
Viscosity (cP)	3500	3420	3350
Microbial growth	Absent	Absent	Absent

Table 2: Stability Results of Tadaflexe (Tadalafil 10 mg) in Yemeni honey oral gel sachet under accelerated conditions at 40 °C ±2 °C / 75% ± 5% RH.

Parameter	Zero Time	3 Months	6 Months
Appearance	Clear, homogenous	No change	Slight viscosity reduction
pН	5.8	5.7	5.7
Assay (% of label)	101.2%	100.1%	99.9%
Viscosity (cP)	3500	3420	3350
Microbial growth	Absent	Absent	Absent

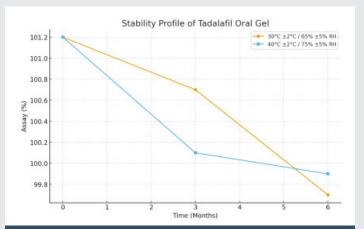


Figure 1: Stability Profile of Tadalafil Oral Gel

was nevertheless within tolerable bounds [17]. The inherent antibacterial properties of honey were confirmed by the absence of microbiological growth [18]. These results are consistent with earlier research showing honey's capacity to stabilize medication gels [19]. According to ICH extrapolation criteria, the anticipated long-term stability at 25 °C and 60% relative humidity indicates a shelf life of more than 24 months [20,21]. The present study's results validate the physical, chemical, and microbiological stability of the oral Tadaflexe (Tadalafil 10 mg) oral gel sachet in Yemeni honey under both normal and accelerated circumstances. Throughout the investigation, the assay results showed little degradation, being within the ICH acceptable range of 95% - 105% [8]. The formulation's resilience is further reinforced by its consistent pH and lack of contamination. These outcomes confirm the quality of the formulation and its suitability for a longer shelf life [21,22]. The Tadaflexe (Tadalafil 10 mg) oral gel's stability profile was good in both rapid and long-term storage settings. Although they stayed well within the ICH acceptability range (95% - 105%), slight decreases in test values are consistent with usual degradation behavior. The pH stability indicates that the formulation's buffering agents worked well. The effectiveness

of preservatives and appropriate production hygiene is confirmed by the lack of microbiological development [16-22]. Tadaflexe (Tadalafil 10 mg in Yemeni honey oral gel sachet) exhibits exceptional stability under both expedited and anticipated long-term conditions, according to the current study. The formulation is suitable for regulatory submission with a projected 2-year shelf life.

Conclusion

The Tadaflexe (Tadalafil 10 mg in Yemeni honey oral gel sachet) demonstrated excellent stability across all tested parameters over six months. These findings provide a strong basis for further clinical development and market readiness of the product.

References

- 1. Forgue ST, Beverley EP, Alun B, Jewell H, Patterson BE, Malcolm M. Tadalafil pharmacokinetics in healthy subjects. Br J Clin Pharmacol. 2006;61(3):280-8. Available from: https://doi.org/10.1111/j.1365-2125.2006.02726.x
- 2. Robert MC, Culley CC. Tadalafil in the treatment of erectile dysfunction. Ther Clin Risk Manag. 2008;4(6):1315-29. Available from: https://doi.org/10.2147/ tcrm.s3336
- 3. Rebecca SP, Cary EJ, Regine LC. Stability of an extemporaneously prepared tadalafil suspension. Am J Health Syst Pharm. 2012;69(7):592-4. Available from: https://doi.org/10.2146/ajhp110034
- 4. Great IE, Othuke A, Agatha NJ, Favour OO, Joseph OO, Kennedy AO. Quality, composition and health effects of natural honey: a review. Resour Human Health. 2023;3(4):449-61. Available from: https://doi.org/10.53365/ nrfhh/174739
- 5. Ogwu MC, Izah SC. Honey as a natural antimicrobial. Antibiotics. 2025;14:255. Available from: https://doi.org/10.3390/antibiotics14030255
- 6. Hossain ML, Lim LY, Hammer K, Hettiarachchi D, Locher C. Honey-based medicinal formulations: a critical review. Appl Sci. 2021;11:5159. Available from: https://doi.org/10.3390/app11115159
- 7. Sankar M, Arulantony S. Stability-indicating RP-HPLC method for estimation of tadalafil in oral jelly dosage forms. Paripex Indian J Res. 2013;2(8):19-22. Available from: https://www.worldwidejournals.com/paripex/recent_issues_ pdf/2013/August/a-stability-indicating-rphplc-method-for-the-estimation-of $tadala fil-in-oral-jelly-dosage-forms_August_2013_1914708610_4500731.pdf$
- 8. World Health Organization. ICH Q1A(R2): Stability testing of new drug substances and products. WHO Technical Report Series No. 953. 2009. Available from: http://academy.gmp-compliance.org/guidemgr/files/WHO_ TRS_953_Annex2.pdf
- 9. Yousry C, Khattab A, Elkasabgy N. Nanoemulsion-based jellies of tadalafil: formulation, stability, and in vitro evaluation. Pharmaceutics. 2022;14(12):2592. Available from: https://doi.org/10.3390/ pharmaceutics14122592
- 10. Hossain ML, Lim LY, Hammer K, Hettiarachchi D, Locher C. Honey-based medicinal formulations: a critical review. Appl Sci. 2021;11:5159. Available from: https://doi.org/10.3390/app11115159
- 11. World Health Organization. Annex 10. Stability testing of active pharmaceutical ingredients and finished pharmaceutical products. Geneva (CH): WHO; 2018. Available from: https://www.who.int/publications/m/item/ trs1010-annex10
- 12. ICH. Q1A(R2): Stability testing of new drug substances and products. In: ICH Harmonised Tripartite Guideline Stability. Geneva (CH): ICH; 2003;1-18. Available from: https://database.ich.org/sites/default/files/ Q1A%28R2%29%20Guideline.pdf

- 13. World Health Organization. Guidelines for stability testing of pharmaceutical products containing well established drug substances in conventional dosage forms. WHO Technical Report Series No. 863. Geneva (CH): WHO; 1996;65-76. Available from: https://extranet.who.int/prequal/sites/default/ files/document_files/TRS_863_Annex7.pdf
- 14. Singh S, Bakshi M. Guidance on conduct of stress tests to determine inherent stability of drugs. Pharm Technol Asia. 2000;1-14. Available from: https:// www.semanticscholar.org/paper/Guidance-on-Conduct-of-Stress-Tests-to-Determine-of-Singh-Bakshi/fce4347f5ddbc12ac1f74d9f7e7ae6db3be2336b
- 15. Bajaj S, Singla D, Sakhuja N. Stability testing of pharmaceutical products. J Appl Pharm Sci. 2012;2:129–38. Available from: https://japsonline.com/ admin/php/uploads/409_pdf.pdf
- 16. Trissel LA, Ashworth LD, Ashworth J. Trissel's Stability of Compounded Formulations. 6th ed. Bethesda (MD): American Pharmacists Association; 2018. eISBN: 1-58212-296-2. Available from: https://pharmacylibrary.com/ doi/book/10.21019/9781582122960
- 17. Sukamdi DP, Dewinda ZS, Damarwati VL, Nurul M, Dhecella WCN. Evaluation of physical and chemical stability of semisolid preparations towards beyonduse date. Acta Pharm Indo. 2023;11(2):9260. Available from: https://doi. org/10.20884/1.api.2023.11.2.9260
- 18. Pavčnik L, Prunk M, Trdan Lušin T, Roškar R. Accelerated predictive stability testing: accelerating registration phase and application of reduced designs for shelf-life determination of parenteral drug product. Pharmaceutics. 2025;17:160. Available from: https://doi.org/10.3390/ pharmaceutics17020160
- 19. Reddy BP, Reddy KA, Reddy MS. Validation and stability indicating RP-HPLC method for the determination of tadalafil API in pharmaceutical formulations. Res Pharm Biotechnol. 2010;2(1):1-6. Available from: https:// doi.org/10.5897/RPB.9000030
- 20. Siluana KT, Bibiana S, Greici B, Patricia B, Gonzaga LV, Fett R, et al. An overview of physicochemical characteristics and health-promoting properties of honeydew honey. Food Res Int. 2019;119:44-66. Available from: https:// doi.org/10.1016/j.foodres.2019.01.028
- 21. Kottke R. Impact of viscosity and drug formulation on pharmaceutical development. J Chem Pharm Res. 2023;15:083. Available from: https:// www.jocpr.com/articles/impact-of-viscosity-and-drug-formulation-onpharmaceutical-development.pdf
- 22. Veach B, Kibbey J, Broadaway B, Dougherty K, Baker C, Vyas H. Confirmatory analysis of honey for sildenafil and tadalafil by LC-MS/MS. Jefferson (AR): U.S. Food and Drug Administration; 2023. Available from: https://www.fda. gov/media/169769/download

Discover a bigger Impact and Visibility of your article publication with **Peertechz Publications**

Highlights

- Signatory publisher of ORCID
- Signatory Publisher of DORA (San Francisco Declaration on Research Assessment)
- Articles archived in worlds' renowned service providers such as Portico, CNKI, AGRIS, TDNet, Base (Bielefeld University Library), CrossRef, Scilit, J-Gate etc.
- Journals indexed in ICMJE, SHERPA/ROMEO, Google Scholar etc.
- OAI-PMH (Open Archives Initiative Protocol for Metadata Harvesting)
- Dedicated Editorial Board for every journal
- Accurate and rapid peer-review process
- Increased citations of published articles through promotions
- Reduced timeline for article publication

Submit your articles and experience a new surge in publication services https://www.peertechzpublications.org/submission

Peertechz journals wishes everlasting success in your every endeavours.