

Research Article

Blood Diseases and *In vitro* Methods and Technologies

Mahdi Nowroozi*

Faculty of Medical Laboratory Technology, Khatam Al Nabieen University, Kabul, Afghanistan

Abstract

In vitro diagnostics, which appraise bodily functions or illnesses by extra-corporeal examination of materials like tissue and blood, have become increasingly important in our daily lives due to increased health consciousness and the advancement of new technology. Moreover, in addition to therapeutic applications, *in-vitro* diagnostics may also be used to screen for and prevent diseases. Laboratory methods and techniques have changed and have forwarded movements and developed. Laboratory hematology has a role in all aspects of patient care, from basic screening to more complex investigations in third-party care services. It also includes non-laboratory services like bone marrow transplantation and blood transfusion. Diagnosis of hematology patients correlated to the target and material that they want to find and rectify the reasons of illness, such as molecular assays that tested genetic materials and macromolecules, biochemistry assays that detected the metabolic disorders, which differentiated factors by biochemical properties and interactions, and biophysical assays that utilized the light and microscopically analyzed tools for tests. In this systematic analysis, the contemporary published articles that discuss the diagnosis of hematological diseases and demonstrate the factors of diseases that correlate with the Laboratory methods of assays. And want to indicate the correlation between the factor of illness in diagnosis analysis and laboratory methods and techniques that are utilized in diagnosis

Introduction

In vitro diagnostics, which evaluate illnesses or bodily functions by extracorporeal examination of materials like blood and tissue, have become increasingly significant in our daily lives due to the advancement of new technology and increased health consciousness [1,2]. In addition to therapy, *in vitro* diagnostics may be used to screen for and prevent diseases. This is particularly true in the prevention and control of the current COVID-19 pandemic. Patient acceptability and time consumption are dominated by *in vitro* diagnostics [3].

Focusing on blood cells, blood-forming organs, and the diseases of organs depends on hematology sciences. In the human body, each day, millions of erythrocytes, platelets, and leukocytes are produced and replaced by blood cells that are lost within the normal cell cycle [4]. Moreover, the laboratory diagnosis is one of the most critical steps for better diagnosis of different diseases than physical diagnosis, especially in hematology patients and their treatment. The hematologic diseases which have significant problems in health such as mild bleeding disorders [5], coagulation disorders [6], hereditary

haemochromatosis [7], inherited platelet disorders [8], thromboembolic diseases [9], thalassemia [10], hematologic malignancies myelodysplastic/myeloproliferative neoplasms, myeloid/lymphoid [11], leukemias [4] and others that may be diagnosis in molecular, microscopic, biophysical, biochemistry assays and help the treatment departments to cure better by finding the reasons of diseases.

Laboratory hematology has a role in all aspects of patient care, from basic screening to more complex investigations in third-party care services. It also includes non-laboratory services like bone marrow transplantation and blood transfusion. Additionally, hematology labs support specialist facilities that offer integrated care for common hematological illnesses that call for multidisciplinary services and specialized experience, as well as national public health initiatives that target blood disorders. The function of the laboratory has evolved from that of a testing facility to that of a collaborator in healthcare, and technological advancements in hematology and personalized medicine have increased the dependence on laboratory data. But this is especially difficult in nations with low resources [12]. In this article, collected the hematological

Received: 11 November, 2025

Accepted: 19 November, 2025

Published: 20 November, 2025

***Corresponding author:** Mahdi Nowroozi, Faculty of Medical Laboratory Technology, Khatam Al Nabieen University, Kabul, Afghanistan, Email: mahdinowroozi313@gmail.com

Keywords: Laboratory techniques; *In vitro*; Blood diseases; Diagnosis

Copyright License: © 2025 Nowroozi M. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

<https://www.clinsurgroup.us>

laboratory methods and techniques assays which indicated and measured the diseases factors with various types of assays which done *in vitro* such as molecular, biochemistry, biophysical, chromogenic, and microscopic, which done approximately in last two decades, and one of facilitated way for *in vitro* researchers who want to find out the different laboratory results in among different homologous diseases.

Method and materials

This systematic review article was formed by information which collected from acceptable international hematological and medical journals such as Google Scholar, PubMed, ScienceDirect, International Journal of Laboratory Hematology, etc. The flowchart (Figure 1) demonstrated more details about the steps of filtering and excluded articles that do not depend on electronic methods, indicating the number of articles used in this systematic review.

Types of laboratory methods

In this review, several articles are studied to indicate various methods and technologies (Table 1) that are utilized in hematology disease laboratory diagnosis, such as molecular biology testing, biochemistry testing, biophysical testing, chromogenic assays, and many others that are used in investigation and diagnosis in recent years.

Biophysical technology

The application of physical scientific concepts and methods to the study of biological systems has advanced significantly over the last 60 years, yielding amazing new understandings of the molecular foundation of life [13]. The process of

transferring concepts and methods from physics to biology, which gave rise to the field of biophysics, has been repeated using a variety of other techniques, such as mass spectrometry (MS), electron microscopy, NMR spectroscopy, and a variety of optical spectroscopies, such as circular dichroism and various fluorescence measurements. Each of these techniques has seen dramatic methodological advancements, similar to X-ray crystallography, and its impact on structural biology has been revolutionary. A selection of recent articles in Annual Review journals provides insight into the variety of current applications of these techniques. As a result, for instance, cryo-electron microscopy can now produce the structures of even very large molecules and complexes at atomic resolution without the need for crystallization; this was thought to be impossible for many years, but as is frequently the case, a combination of new technology and scientific intuition has produced significant advancements [14]. Macromolecular structures in the solution environments where they function have been determined by NMR spectroscopy, and their conformations in other environments, such as membranes and pathological aggregates [15], have been probed through the use of specialized solid-state techniques. MS has now progressed to the point that it is possible to examine the structural characteristics of huge biological complexes in their functional settings [16]. The idea that optical methods could not reveal information about structural features smaller than the wavelength of light has been proven to be false by the development of super-resolution techniques [17]. Optical techniques, especially those involving fluorescence, have also advanced significantly, allowing them to be applied at the single-molecule level [18] and to produce images at a much higher resolution than was previously thought to be possible.

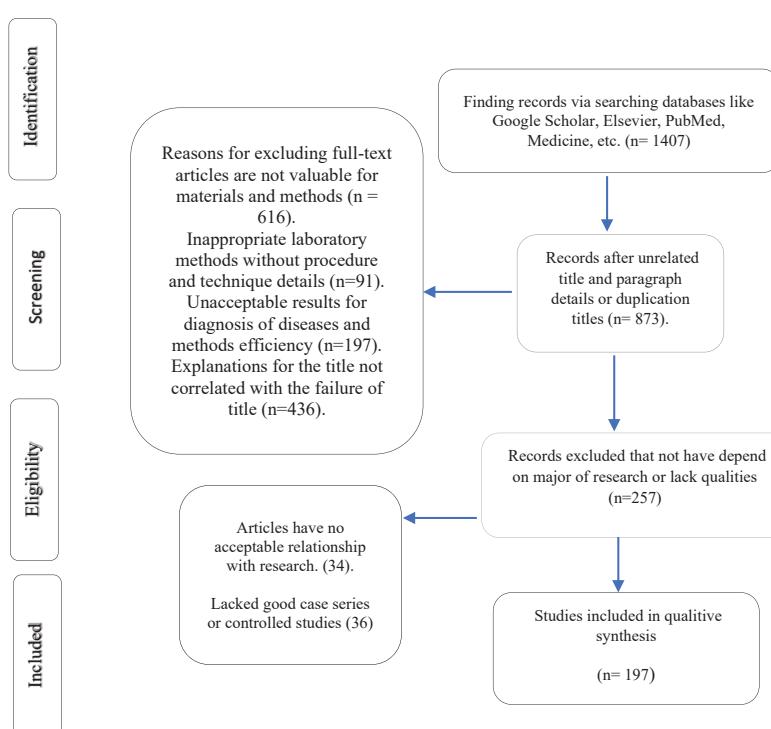


Figure 1: Flowchart of data extraction and search strategy finding.

A short time after the initial structures were determined by X-ray diffraction, it was realized that proteins with great sequence similarity were probably similarly structured. In fact, the creation of a model of α -lactalbumin from that of lysozyme, whose function is entirely different but whose sequence is very similar, was a very early example of molecular homology modeling [19]; the viability of this approach was confirmed by the good agreement between this model and the experimental structure when it was determined. Since then, it has become possible to comprehend the relationships between sequence and structure in greater detail due to the massive increase in the number of structures in the Protein Data Bank and protein sequences in UniProt. This has allowed for the modeling of numerous unknown structures and, in fact, the creation of novel amino acid sequences that fold into particular structures [20]. Instrumentation advancements, from the building of ever-more powerful X-ray sources to the establishment of high-throughput sequencing facilities, have greatly benefited all of these chances. Furthermore, the use of simulation techniques that provide insight into the characteristics of macromolecules that are difficult to define by experiment, such as many aspects of dynamic behavior and reaction mechanisms, has been made possible by the rapid and ongoing advancements in computer power [21,22].

Microscopic technology

The foundation of hematological diagnostics is a growing level of precision in cellular and molecular analytical methods. A fundamental component remains the accurate interpretation of bone marrow and blood smears seen under an optical microscope [23]. The standard technique for analyzing hematological cells on peripheral blood and bone marrow aspirated smears, both qualitatively and quantitatively, is still an optical microscope. The variations in the nomenclature used to identify blood cells (BCs), the lack of staining techniques for the preparations to be examined under the microscope and a harmonized standardization of the preparation, and the subjectivity and methodological approach's variability [23] due to the degree of individual skill and experience under the microscope are all factors that limit the diagnostic effectiveness of the procedure [24].

The European Leukemia Net WP10.14 and the Working Group on Morphology of Myelodysplastic Syndrome (ISWMDS) [25-27] are two organizations that conduct international harmonization initiatives on blood cell morphology. Even though the World Health Organization [28], International Council for Standardization in Hematology (ICSH) [29,30], and Clinical and Laboratory Standard Institute (CLSI) [30] have established international guidelines and operational standards, inter-operator variability is still a critical factor [31] that necessitates additional training and group harmonization procedures. In the first edition of the WHO classification of hematopoietic neoplasms, the qualitative and quantitative microscopic diagnostic criteria of the FAB classification were revised, put into practice, and included. In a later edition, they were verified [32]. Specific qualitative and quantitative criteria have been explained: (i) For blasts, with precise indications

on cytochemical aspects and morphological aspects and the minimum value required for the acute leukemia definition; and (ii) for dysplasia, with precise indications on the morphological criteria for each myeloid lineage and the minimum value required for the lineage dysplasia definition. Furthermore, depending on the situation, different quantitative criteria should be used to define lineage dysplasia. For example, the threshold for myelodysplastic syndromes and AML with dysplastic-related alterations is 10% and 50%, respectively [23,33].

Molecular technology

Isolating, identifying, and modifying genes is the fundamental idea of molecular techniques. Nucleic acids are extracted, isolated, and then DNA, RNA, and proteins are separated using ribonuclease, proteolytic enzymes, and various detergents [34]. As the gold standard for diagnosing some diseases, molecular diagnostics has gained a lot of recognition. The broad adoption of certain lab-based tests is, however, hampered by their reliance on large, costly equipment, particularly in settings with limited resources, such as centralized laboratory facilities, funding, and skilled people [3].

Result and discussion

Statistical analysis of methods and technologies

According to the qualitative statistics and information gathered from this assessment of techniques and methodologies, the materials of analysis that are examined at various levels are what determine the diagnosis of illness variables. Hematological diagnosis is based on more accurate cellular and molecular analytical techniques. A critical component remains the accurate interpretation of bone marrow and blood smears seen under an optical microscope [23]. The gold standard for both qualitative and quantitative studies of hematological cells on peripheral blood and bone marrow aspirate smears is still an optical microscope. Gene isolation, identification, and alteration are the goals of the other technique, which is based on molecular procedures. Following nucleic acid extraction and isolation, DNA, RNA, and proteins are separated using ribonuclease, proteolytic enzymes, and various detergents [34]. Molecular diagnostics is now widely regarded as the gold standard for diagnosing certain diseases.

Usage of methods in diseases

The types of laboratory diagnosis depend on the target of diagnosis that wants to find such molecular assays to diagnose the smallest parts of cells, like protein, DNA, and RNA [34], and microscopic analysis is utilized for morphological testing. Hematological diseases, including red blood cell membrane disorders, can be diagnosed *in vitro* by combining different types of techniques and methods, such as biophysical measurements [35-37], molecular tests [38-41], microscopic [42,43], physical, and biochemical tests [35,38,44-47]. This depends on the validity of the techniques and methods used and the length of time needed for diagnosis. This article

gathered the most recent articles published in recent years to find the correlation between diagnostic factors and diseases. As an example, hepcidin, the iron regulatory factor, is another example that may be diagnosed using a variety of techniques, including chromogenic assays [48], antibody-based assays [49–55], biophysical measures assays [56,57], and biochemical tests [58]. However, other techniques are only employed to indicate the use of particular hematological materials, such as WCX-TOF MS, which indicates the use of hepcidin [55,58].

Conclusion

As a conclusion of this study, *in vitro* techniques and methods of diagnosis of hematological diseases are different and various, and they are correlated to targets and factors that researchers or doctors want to figure out, such as molecular detection, biophysical assays, and biochemistry, each of which has its own specific characteristics and validation.

Data availability statement

The data presented in this study are open sources available in Science Direct, Google Scholar, PubMed, Laboratory hematology, and other international journals.

References

- Vitzthum F, Behrens F, Anderson NL, Shaw JH. Proteomics: from basic research to diagnostic application. A review of requirements & needs. *J Proteome Res.* 2005;4(4):1086–97. Available from: <https://doi.org/10.1021/pr050080b>
- Lippi G, Plebani M, Favalaro EJ, Trenti T. Laboratory testing in pharmacies. *Clin Chem Lab Med.* 2010;48(7):943–53. Available from: <https://doi.org/10.1515/cclm.2010.184>
- Mackie IJ, d'Onofrio G. Recent developments in the International Journal of Laboratory Hematology. *Int J Lab Hematol.* 2022;44(S1):4–5. Available from: https://doi.org/10.1111/ijlh.13858?urlappend=%3Futm_source%3Dresearchgate.net%26medium%3Darticle
- Ozaslan M, Oguzkan SB. The use of molecular biology methods in evaluating hematologic diseases. *Eurasia Proc Sci Technol Eng Math.* 2020;9:18–22. Available from: <https://dergipark.org.tr/en/download/article-file/1174342>
- Boender J, Kruij MJHA, Leebeek FWG. A diagnostic approach to mild bleeding disorders. *J Thromb Haemost.* 2016;14(8):1507–16. Available from: <https://doi.org/10.1111/jth.13368>
- Pavlou EG, Georgatzakou HT, Fortis SP, Tsante KA, Tsantes AG, Nomikou EG, et al. Coagulation abnormalities in renal pathology of chronic kidney disease: the interplay between blood cells and soluble factors. *Biomolecules.* 2021;11(9). Available from: <https://doi.org/10.3390/biom11091309>
- Murphree CR, Nguyen NN, Raghunathan V, Olson SR, DeLoughery T, Shatzel JJ. Diagnosis and management of hereditary haemochromatosis. *Vox Sang.* 2020;115(4):255–62. Available from: <https://doi.org/10.1111/vox.12896>
- Greinacher A, Pecci A, Kunishima S, Althaus K, Nurden P, Balduini CL, et al. Diagnosis of inherited platelet disorders on a blood smear: a tool to facilitate worldwide diagnosis of platelet disorders. *J Thromb Haemost.* 2017;15(7):1511–21. Available from: <https://doi.org/10.1111/jth.13729>
- Mailer RK, Kuta P, Renné T. An update on safe anticoagulation. *Hamostaseologie.* 2022;42(1):65–72. Available from: <https://doi.org/10.1055/a-1717-7958>
- Mensah C, Sheth S. Optimal strategies for carrier screening and prenatal diagnosis of α - and β -thalassemia. *Hematology Am Soc Hematol Educ Program.* 2021;2021(1):607–13. Available from: <https://doi.org/10.1182/hematology.2021000296>
- Lauzon-Young C, Silva A, Sadikovic B. Epigenomic insights and computational advances in hematologic malignancies. *Mol Cytogenet.* 2025;18(1):9. Available from: <https://doi.org/10.1186/s13039-025-00712-9>
- Rizk SH. Challenges to laboratory hematology practice: Egypt perspective. *Int J Lab Hematol.* 2018;40(Suppl 1):126–36. Available from: <https://doi.org/10.1111/ijlh.12834>
- Dobson CM. Biophysical techniques in structural biology. *Annu Rev Biochem.* 2019;88:25–33. Available from: <https://doi.org/10.1146/annurev-biochem-013118-111947>
- Elmlund D, Elmlund H. Cryogenic electron microscopy and single-particle analysis. *Annu Rev Biochem.* 2015;84(1):499–517. Available from: <https://doi.org/10.1146/annurev-biochem-060614-034226>
- Mandala VS, Williams JK, Hong M. Structure and dynamics of membrane proteins from solid-state NMR. *Annu Rev Biophys.* 2018;47:201–22. Available from: <https://doi.org/10.1146/annurev-biophys-070816-033712>
- Mehmood S, Allison TM, Robinson CV. Mass spectrometry of protein complexes: from origins to applications. *Annu Rev Phys Chem.* 2015;66:453–74. Available from: <https://doi.org/10.1146/annurev-physchem-040214-121732>
- Baddeley D, Bewersdorf J. Biological insight from super-resolution microscopy: what we can learn from localization-based images. *Annu Rev Biochem.* 2018;87:965–89. Available from: <https://doi.org/10.1146/annurev-biochem-060815-014801>
- Ha T, Tinnefeld P. Photophysics of fluorescent probes for single-molecule biophysics and super-resolution imaging. *Annu Rev Phys Chem.* 2012;63:595–617. Available from: <https://doi.org/10.1146/annurev-physchem-032210-103340>
- Browne WJ, North AC, Phillips DC, Brew K, Vanaman TC, Hill RL. A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen's egg-white lysozyme. *J Mol Biol.* 1969;42(1):65–86. Available from: [https://doi.org/10.1016/0022-2836\(69\)90487-2](https://doi.org/10.1016/0022-2836(69)90487-2)
- Huang PS, Boyken SE, Baker D. The coming of age of *de novo* protein design. *Nature.* 2016;537(7620):320–7. Available from: <https://doi.org/10.1038/nature19946>
- Zhuang C, Gould JE, Enninful A, Shao S, Mak M. Biophysical and mechanobiological considerations for T-cell-based immunotherapy. *Trends Pharmacol Sci.* 2023;44(6):366–78. Available from: <https://doi.org/10.1016/j.tips.2023.03.007>
- Dror RO, Dirks RM, Grossman JP, Xu H, Shaw DE. Biomolecular simulation: a computational microscope for molecular biology. *Annu Rev Biophys.* 2012;41:429–52. Available from: <https://doi.org/10.1146/annurev-biophys-042910-155245>
- Zini G, Barbagallo O, Scavone F, Béné MC. Digital morphology in hematology diagnosis and education: the experience of the European LeukemiaNet WP10. *Int J Lab Hematol.* 2022;44(S1):37–44. Available from: <https://doi.org/10.1111/ijlh.13908>
- Sasada K, Yamamoto N, Masuda H, Tanaka Y, Ishihara A, Takamatsu Y, et al. Inter-observer variance and the need for standardization in the morphological classification of myelodysplastic syndrome. *Leuk Res.* 2018;69:54–9. Available from: <https://doi.org/10.1016/j.leukres.2018.04.003>
- Mufti GJ, Bennett JM, Goasguen J, Bain BJ, Baumann I, Brunning R, et al. Diagnosis and classification of myelodysplastic syndrome: International Working Group on Morphology of Myelodysplastic Syndrome consensus proposals for the definition and enumeration of myeloblasts and ring sideroblasts. *Haematologica.* 2008;93(11):1712–7. Available from: <https://doi.org/10.3324/haematol.13405>
- Goasguen JE, Bennett JM, Bain BJ, Brunning RD, Vallespi MT, Tomonaga M, et al. Quality control initiative on the evaluation of the dysmegakaryopoiesis in myeloid neoplasms: difficulties in the assessment of dysplasia. *Leuk Res.* 2016;45:75–81. Available from: <https://doi.org/10.1016/j.leukres.2016.04.009>
- Goasguen JE, Bennett JM, Bain BJ, Brunning R, Zini G, Vallespi MT, et al. The role of eosinophil morphology in distinguishing between reactive eosinophilia and eosinophilia as a feature of a myeloid neoplasm. *Br J Haematol.* 2020;191(3):497–504. Available from: <https://doi.org/10.1111/bjh.17026>
- World Health Organization. Anaemia in women and children. Geneva: World Health Organization; 2021. Available from: https://www.who.int/data/gho/data/themes/topics/anaemia_in_women_and_children
- Briggs C, Culp N, Davis B, d'Onofrio G, Zini G, Machin SJ. ICSH guidelines for the evaluation of blood cell analysers, including those used for differential leucocyte

and reticulocyte counting. *Int J Lab Hematol.* 2014;36(6):613–27. Available from: <https://doi.org/10.1111/ijlh.12201>

30. Zini G, d'Onofrio G, Erber WN, Lee SH, Nagai Y, Basak GW, et al. 2021 update of the 2012 ICSH recommendations for identification, diagnostic value, and quantitation of schistocytes: impact and revisions. *Int J Lab Hematol.* 2021;43(6):1264–71. Available from: <https://doi.org/10.1111/ijlh.13682>

31. Fuentes-Arderiu X, García-Panyella M, Dot-Bach D. Between-examiner reproducibility in manual differential leukocyte counting. *Accred Qual Assur.* 2007;12:643–5. Available from: <https://doi.org/10.1515/cclm.2009.014>

32. Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J. WHO classification of tumours of haematopoietic and lymphoid tissues. International Agency for Research on Cancer; 2017. Available from: <https://publications.iarc.who.int/Book-And-Report-Series/Who-Classification-Of-Tumours/WHO-Classification-Of-Tumours-Of-Haematopoietic-And-Lymphoid-Tissues-2017>

33. John MB. Morphological classification of the myelodysplastic syndromes: how much more education of diagnosticians is necessary? *Haematologica.* 2013;98(4):490–1. Available from: <https://doi.org/10.3324/haematol.2013.084418>

34. Koutsi A, Vervesou EC. Diagnostic molecular techniques in haematology: recent advances. *Ann Transl Med.* 2018;6(12):242. Available from: <https://doi.org/10.21037/atm.2018.05.30>

35. Harper SL, Sriswasdi S, Tang HY, Gaetani M, Gallagher PG, Speicher DW. The common hereditary elliptocytosis-associated α -spectrin L260P mutation perturbs erythrocyte membranes by stabilizing spectrin in the closed dimer conformation. *Blood.* 2013;122(17):3045–53. Available from: <https://doi.org/10.1182/blood-2013-02-487702>

36. Wu Y, Liao L, Lin F. The diagnostic protocol for hereditary spherocytosis—2021 update. *J Clin Lab Anal.* 2021;35(12):e24034. Available from: <https://doi.org/10.1002/jcla.24034>

37. Pepeler MS, Falay M, Aydin MS, Parmaksız A, Keskin EY, Alanoğlu G, et al. Eosin-5 α -maleimide (EMA)-binding assay as a diagnostic method of hereditary spherocytosis. *Turk J Biochem.* 2025. Available from: https://doi.org/10.1515/tjb-2025-0040?urlappend=%3Futm_source%3Dresearchgate.net%26medium%3Darticle

38. Shih YH, Huang YC, Lin CY, Lin HY, Kuo SF, Lin JS, et al. A large family of hereditary spherocytosis and a rare case of hereditary elliptocytosis with a novel SPTA1 mutation underdiagnosed in Taiwan: a case report and literature review. *Medicine.* 2023;102(4):e32708. Available from: <https://doi.org/10.1097/MD.00000000000032708>

39. Laithaisong S, Muisuk K, Komwilaisak P, Laoaroon N, Suwannaying K, Rattanathongkom A, et al. Novel ANK1 mutation in hereditary spherocytosis in a northeastern Thai patient: a case report. *Med Rep.* 2025;13:100239. Available from: <https://doi.org/10.1016/j.hmedic.2025.100239>

40. Andolfo I, Russo R, Gambale A, Iolascon A. Hereditary stomatocytosis: an underdiagnosed condition. *Am J Hematol.* 2018;93(1):107–21. Available from: <https://doi.org/10.1002/ajh.24929>

41. Chonat S, Risinger M, Sakthivel H, Niss O, Rothman JA, Hsieh L, et al. The spectrum of SPTA1-associated hereditary spherocytosis. *Front Physiol.* 2019;10:815. Available from: <https://doi.org/10.3389/fphys.2019.00815>

42. Li X, Zhang T, Li X, Wang L, Li Q, Liu Q, et al. Identification of a novel SPTB gene splicing mutation in hereditary spherocytosis: a case report and diagnostic insights. *Front Genet.* 2025;15. Available from: <https://doi.org/10.3389/fgene.2024.1522204>

43. Han E, Kim A, Park J, Kim M, Kim Y, Han K, et al. Spectrin Tunis (Sp alpha (I/78)) in a Korean family with hereditary elliptocytosis. *Ann Lab Med.* 2013;33(5):386–9. Available from: <https://pmc.ncbi.nlm.nih.gov/articles/PMC3756249/>

44. Sun X, Zeng Q, He R, Zhou L, Hou Q. Frameshift mutation in the EPB41 gene with hereditary elliptocytosis. *Indian J Hematol Blood Transfus.* 2024;1–2. Available from: <https://doi.org/10.1007/s12288-024-01868-x>

45. Onat M, Kavak EC, Akcabay C, Malkan Z, Kaya T, Batmaz I, et al. Evaluation of transcutaneous bilirubin levels in healthy and preeclamptic pregnancies: a pilot study. *BMC Pregnancy Childbirth.* 2025;25(1):764. Available from: <https://doi.org/10.1186/s12884-025-07878-5>

46. Trabelsi N, Bouguerra G, Haddad F, Ouederni M, Darragi I, Boudriga I, et al. Biochemical, cellular, and proteomic characterization of hereditary spherocytosis among Tunisians. *Cell Physiol Biochem.* 2021;55(1):117–29. Available from: <https://doi.org/10.33594/000000333>

47. Bernhardt I, Kaestner L. Historical view and some unsolved problems in red blood cell membrane research. 2025. Available from: <https://doi.org/10.31083/fbl25331>

48. Al-Rawaf HA, Gabr SA, Iqbal A, Alghadir AH. Circulating microRNAs and hepcidin as predictors of iron homeostasis and anemia among school children: a biochemical and cross-sectional survey analysis. *Eur J Med Res.* 2023;28(1):595. Available from: <https://doi.org/10.1186/s40001-023-01579-5>

49. Huibers MHW, Calis JC, Allain TJ, Coupland SE, Phiri C, Phiri KS, et al. A possible role for hepcidin in the detection of iron deficiency in severely anaemic HIV-infected patients in Malawi. *PLoS One.* 2020;15(2):e0218694. Available from: <https://doi.org/10.1371/journal.pone.0218694>

50. Stojkovic Lalosevic M, Toncev L, Stankovic S, Dragasevic S, Stojkovic S, Jovicic I, et al. Hepcidin is a reliable marker of iron deficiency anemia in newly diagnosed patients with inflammatory bowel disease. *Dis Markers.* 2020;2020:8523205. Available from: <https://doi.org/10.1155/2020/8523205>

51. Zhang JY, Wang J, Lu Q, Tan M, Wei R, Lash GE. Iron stores at birth in a full-term normal birth weight birth cohort with a low level of inflammation. *Biosci Rep.* 2020;40(12). Available from: <https://doi.org/10.1042/bsr20202853>

52. Chatterjee P, Mohammadi M, Goozee K, Shah TM, Sohrabi HR, Dias CB, et al. Serum hepcidin levels in cognitively normal older adults with high neocortical amyloid- β load. *J Alzheimers Dis.* 2020;76(1):291–301. Available from: <https://doi.org/10.3233/jad-200162>

53. Singh A, Pandey HC, Chaudhary R. Establishment of normal reference range of serum hepcidin in Indian blood donors. *Asian J Transfus Sci.* 2023;17(1):1–6. Available from: https://doi.org/10.4103/ajts.ajts_7_22

54. Tarancón-Diez L, Iriarte-Gahete M, Sanchez-Mingo P, Perez-Cabeza G, Romero-Candau F, Pacheco YM, et al. Real-world experience of intravenous iron sucrose supplementation and dynamics of soluble transferrin receptor and hepcidin in a Spanish cohort of absolute iron-deficient patients. *Biomed Pharmacother.* 2023;167:115510. Available from: <https://doi.org/10.1016/j.bioph.2023.115510>

55. Kali A, Charles MV, Seetharam RS. Hepcidin – a novel biomarker with changing trends. *Pharmacogn Rev.* 2015;9(17):35–40. Available from: <https://doi.org/10.4103/0973-7847.156333>

56. Rusch JA, van der Westhuizen DJ, Gill RS, Louw VJ. Diagnosing iron deficiency: controversies and novel metrics. *Best Pract Res Clin Anaesthesiol.* 2023;37(4):451–67. Available from: <https://doi.org/10.1016/j.bpr.2023.11.001>

57. Nemeth E, Ganz T. Hepcidin and iron in health and disease. *Annu Rev Med.* 2023;74:261–77. Available from: <https://doi.org/10.1146/annurev-med-043021-032816>

58. van der Staaij H, Donker AE, Bakkeren DL, Salemans J, Mignot-Evers LAA, Bongers MY, et al. Transferrin saturation/hepcidin ratio discriminates TMPRSS6-related iron refractory iron deficiency anemia from patients with multi-causal iron deficiency anemia. *Int J Mol Sci.* 2022;23(3). Available from: <https://doi.org/10.3390/ijms23031917>